2,241 research outputs found

    Dynamical Synapses Enhance Neural Information Processing: Gracefulness, Accuracy and Mobility

    Full text link
    Experimental data have revealed that neuronal connection efficacy exhibits two forms of short-term plasticity, namely, short-term depression (STD) and short-term facilitation (STF). They have time constants residing between fast neural signaling and rapid learning, and may serve as substrates for neural systems manipulating temporal information on relevant time scales. The present study investigates the impact of STD and STF on the dynamics of continuous attractor neural networks (CANNs) and their potential roles in neural information processing. We find that STD endows the network with slow-decaying plateau behaviors-the network that is initially being stimulated to an active state decays to a silent state very slowly on the time scale of STD rather than on the time scale of neural signaling. This provides a mechanism for neural systems to hold sensory memory easily and shut off persistent activities gracefully. With STF, we find that the network can hold a memory trace of external inputs in the facilitated neuronal interactions, which provides a way to stabilize the network response to noisy inputs, leading to improved accuracy in population decoding. Furthermore, we find that STD increases the mobility of the network states. The increased mobility enhances the tracking performance of the network in response to time-varying stimuli, leading to anticipative neural responses. In general, we find that STD and STP tend to have opposite effects on network dynamics and complementary computational advantages, suggesting that the brain may employ a strategy of weighting them differentially depending on the computational purpose.Comment: 40 pages, 17 figure

    Neuronal assembly dynamics in supervised and unsupervised learning scenarios

    Get PDF
    The dynamic formation of groups of neurons—neuronal assemblies—is believed to mediate cognitive phenomena at many levels, but their detailed operation and mechanisms of interaction are still to be uncovered. One hypothesis suggests that synchronized oscillations underpin their formation and functioning, with a focus on the temporal structure of neuronal signals. In this context, we investigate neuronal assembly dynamics in two complementary scenarios: the first, a supervised spike pattern classification task, in which noisy variations of a collection of spikes have to be correctly labeled; the second, an unsupervised, minimally cognitive evolutionary robotics tasks, in which an evolved agent has to cope with multiple, possibly conflicting, objectives. In both cases, the more traditional dynamical analysis of the system’s variables is paired with information-theoretic techniques in order to get a broader picture of the ongoing interactions with and within the network. The neural network model is inspired by the Kuramoto model of coupled phase oscillators and allows one to fine-tune the network synchronization dynamics and assembly configuration. The experiments explore the computational power, redundancy, and generalization capability of neuronal circuits, demonstrating that performance depends nonlinearly on the number of assemblies and neurons in the network and showing that the framework can be exploited to generate minimally cognitive behaviors, with dynamic assembly formation accounting for varying degrees of stimuli modulation of the sensorimotor interactions

    Event-driven simulations of a plastic, spiking neural network

    Full text link
    We consider a fully-connected network of leaky integrate-and-fire neurons with spike-timing-dependent plasticity. The plasticity is controlled by a parameter representing the expected weight of a synapse between neurons that are firing randomly with the same mean frequency. For low values of the plasticity parameter, the activities of the system are dominated by noise, while large values of the plasticity parameter lead to self-sustaining activity in the network. We perform event-driven simulations on finite-size networks with up to 128 neurons to find the stationary synaptic weight conformations for different values of the plasticity parameter. In both the low and high activity regimes, the synaptic weights are narrowly distributed around the plasticity parameter value consistent with the predictions of mean-field theory. However, the distribution broadens in the transition region between the two regimes, representing emergent network structures. Using a pseudophysical approach for visualization, we show that the emergent structures are of "path" or "hub" type, observed at different values of the plasticity parameter in the transition region.Comment: 9 pages, 6 figure

    Effects of Noise in a Cortical Neural Model

    Full text link
    Recently Segev et al. (Phys. Rev. E 64,2001, Phys.Rev.Let. 88, 2002) made long-term observations of spontaneous activity of in-vitro cortical networks, which differ from predictions of current models in many features. In this paper we generalize the EI cortical model introduced in a previous paper (S.Scarpetta et al. Neural Comput. 14, 2002), including intrinsic white noise and analyzing effects of noise on the spontaneous activity of the nonlinear system, in order to account for the experimental results of Segev et al.. Analytically we can distinguish different regimes of activity, depending from the model parameters. Using analytical results as a guide line, we perform simulations of the nonlinear stochastic model in two different regimes, B and C. The Power Spectrum Density (PSD) of the activity and the Inter-Event-Interval (IEI) distributions are computed, and compared with experimental results. In regime B the network shows stochastic resonance phenomena and noise induces aperiodic collective synchronous oscillations that mimic experimental observations at 0.5 mM Ca concentration. In regime C the model shows spontaneous synchronous periodic activity that mimic activity observed at 1 mM Ca concentration and the PSD shows two peaks at the 1st and 2nd harmonics in agreement with experiments at 1 mM Ca. Moreover (due to intrinsic noise and nonlinear activation function effects) the PSD shows a broad band peak at low frequency. This feature, observed experimentally, does not find explanation in the previous models. Besides we identify parametric changes (namely increase of noise or decreasing of excitatory connections) that reproduces the fading of periodicity found experimentally at long times, and we identify a way to discriminate between those two possible effects measuring experimentally the low frequency PSD.Comment: 25 pages, 10 figures, to appear in Phys. Rev.

    Dynamics of Neural Networks with Continuous Attractors

    Full text link
    We investigate the dynamics of continuous attractor neural networks (CANNs). Due to the translational invariance of their neuronal interactions, CANNs can hold a continuous family of stationary states. We systematically explore how their neutral stability facilitates the tracking performance of a CANN, which is believed to have wide applications in brain functions. We develop a perturbative approach that utilizes the dominant movement of the network stationary states in the state space. We quantify the distortions of the bump shape during tracking, and study their effects on the tracking performance. Results are obtained on the maximum speed for a moving stimulus to be trackable, and the reaction time to catch up an abrupt change in stimulus.Comment: 6 pages, 7 figures with 4 caption

    Mobility and stochastic resonance in spatially inhomogeneous system

    Get PDF
    The mobility of an overdamped particle, in a periodic potential tilted by a constant external field and moving in a medium with periodic friction coefficient is examined. When the potential and the friction coefficient have the same periodicity but have a phase difference, the mobility shows many interesting features as a function of the applied force, the temperature, etc. The mobility shows stochastic resonance even for constant applied force, an issue of much recent interest. The mobility also exhibits a resonance like phenomenon as a function of the field strength and noise induced slowing down of the particle in an appropriate parameter regime.Comment: 14 pages, 12 figures. Submitted to Phys. Rev.

    Longitudinal change in autonomic symptoms predicts activities of daily living and depression in Parkinson’s disease

    Get PDF
    Purpose: The primary objective of this study was to examine the relationship of longitudinal changes in autonomic symptom burden and longitudinal changes in activities of daily living (ADLs); a secondary analysis examined the impact of depressive symptoms in this relationship. Methods: Data were retrieved from the Parkinson’s Progression Markers Initiative (PPMI), a dataset documenting the natural history of newly diagnosed Parkinson’s disease (PD). The analysis focused on data from baseline, visit 6 (24 months after enrollment), and visit 12 (60 months after enrollment). The impact of longitudinal changes in autonomic symptom burden on longitudinal changes in ADLs function was examined. A secondary mediation analysis was performed to investigate whether longitudinal changes in depressive symptoms mediate the relationship between longitudinal changes in autonomic symptom burden and ADLs function. Results: Changes in autonomic symptom burden, cognitive function, depressive symptoms, and motor function all correlated with ADLs. Only changes in ADLs and depression were found to be associated with changes in autonomic symptom burden. We found that longitudinal change in autonomic symptoms was a significant predictor of change in ADLs at 24 and 60 months after enrollment, with the cardiovascular subscore being a major driver of this association. Mediation analysis revealed that the association between autonomic symptoms and ADLs is partially mediated by depressive symptoms. Conclusions: Longitudinal changes in autonomic symptoms impact ADLs function in patients with early signs of PD, both directly and indirectly through their impact on depressive symptoms. Future investigation into the influence of treatment of these symptoms on outcomes in PD is warranted

    Backreaction on the luminosity-redshift relation from gauge invariant light-cone averaging

    Full text link
    Using a recently proposed gauge invariant formulation of light-cone averaging, together with adapted "geodesic light-cone" coordinates, we show how an "induced backreaction" effect emerges, in general, from correlated fluctuations in the luminosity distance and covariant integration measure. Considering a realistic stochastic spectrum of inhomogeneities of primordial (inflationary) origin we find that both the induced backreaction on the luminosity-redshift relation and the dispersion are larger than naively expected. On the other hand the former, at least to leading order and in the linear perturbative regime, cannot account by itself for the observed effects of dark energy at large-redshifts. A full second-order calculation, or even better a reliable estimate of contributions from the non-linear regime, appears to be necessary before firm conclusions on the correct interpretation of the data can be drawn.Comment: 22 pages, 4 figures. Comments and references added, Fig. 1 modified. Version accepted for publication in JCA

    The Origin of the Pseudogap in Underdoped HTSC

    Full text link
    Here the Origin of the pseudogap in HTSC is attributed to the modulated antiferromagnetic (AFM) phase, whose preliminary version has been sketched recently by the present author [1](arXiv:0901.3896v2 (cond.-mat.sup-con)). Starting from the t-J Hamiltonian, I show that the formal failure of the perturbation theory leads to a transformation to the pseudogap phase. This phase is characterized by the aggregation of the holes into rows and columns, which in turn results in two internal fields. The first is the modulated AFM field, whose main evidence comes from Neutron scattering experiments. The second internal field is made up by the checkerboard charge density waves that have been observed by Scanning Tunneling Measurements. The present paper deals mainly with the internal field of the first type, and discusses the second type only tentatively. Formalism is derived that yields the ground state, the internal field, the Hamiltonian, and the propagators of the condensed phase. Our results resolve the presumably inherent self contradictory concept of pseudogap. It is shown that the excitation energy spectrum is gapless despite the order parameter that is inherent to the condensed system. In addition, it is shown qualitatively that our model predicts "Fermi surface" that is in agreement with experiment
    corecore